" Achilles, der große Krieger, läuft mit einer Schildkröte über - sagen wir mal - 200 m um die Wette. Da Achilles zehnmal schneller läuft als die Schildkröte, bekommt diese der Fairness halber einen Vorsprung von 100 m. Der Gesunde Menschenverstand beharrt darauf, und ist durch nichts von dieser Überzeugung abzubringen, daß Achilles die Schildkröte sehr bald eingeholt haben wird und damit den Wettlauf gewinnt. Und wenn der Gesunde Menschenverstand soweit reicht, lineare Gleichungen mit zwei Unbekannten zu lösen, dann wird er bei unseren Ausgangszahlen errechnen können, daß Achilles die Schildkröte nach 111,111... m eingeholt haben wird.
In diese Selbstverständlichkeit bricht Zenon ein und beweist mit logikscharfem Besteck, daß Achilles die Schildkröte niemals einholen wird, niemals einholen kann. In dem Moment nämlich, argumentiert Zenon, da Achilles den Startpunkt der Schildkröte erreicht hat, ist diese ihrerseits 10 m weiter, also bei 110 m. Hat Achilles die 110 m erreicht, so ist er immer noch nicht bei der Schildkröte, denn die ist inzwischen wiederum 1 m weiter gekrochen, auf 111 m. Ist Achilles bei 111 m, so ist die Schildkröte bei 111,10 m, und so weiter, und so fort.
Immer dann, wenn Achilles jenen Punkt erreicht hat, an dem die Schildkröte zuletzt war, ist die Schildkröte jeweils wieder ein Stück weiter, so daß Achilles im Laufe des Wettkampfes der Schildkröte zwar sehr, sehr nahekommen wird, sie aber niemals vollständig erreichen und - logischerweise - also auch niemals überholen kann. Denn die Schildkröte bleibt immer um ein winziges - wenn auch mit jedem Schritte winziger werdendes - Stück vor Achilles.
Der Vorsprung der Schildkröte wird, so schlußfolgert Zenon, im Laufe der Zeit zwar unendlich klein, völlig verschwinden aber wird er nie. Der schnelle Achilles bleibt also bei allem Strampeln stets hinter dem gemächlichen Tier. "
kann jemand dieses lösen.....ist die schildkröte nun schneller am ziel oder achilles :?: